Pseudo-transient iterative method
The pseudo-transient method consists in augmenting the right-hand-side of the target PDE with a pseudo-time derivative (where $\psi$ is the pseudo-time) of the primary variables. We then solve the resulting system of equations with an iterative method. The pseudo-time derivative is then gradually reduced, until the original PDE is solved and the changes in the primary variables are below a preset tolerance.
Heat diffusion
The pseudo-transient heat-diffusion equation is:
\[\widetilde{\rho}\frac{\partial T}{\partial \psi} + \rho C_p \frac{\partial T}{\partial t} = \nabla \cdot (\kappa\nabla T) = -\nabla q\]
We use a second order pseudo-transient scheme were continuation is also done on the flux, so that:
\[\widetilde{\theta}\frac{\partial q}{\partial \psi} + q = -\kappa\nabla T\]
Stokes equations
For example, the pseudo-transient formulation of the Stokes equations yields:
\[\widetilde{\rho}\frac{\partial \boldsymbol{u}}{\partial \psi} + \nabla\cdot\boldsymbol{\tau} - \nabla p = \boldsymbol{f}\]
\[\frac{1}{\widetilde{K}}\frac{\partial p}{\partial \psi} + \nabla\cdot\boldsymbol{v} = \beta \frac{\partial p}{\partial t} + \alpha \frac{\partial T}{\partial t}\]
Constitutive equations
A pseudo-transient continuation is also done on the constitutive law:
\[\frac{1}{2\widetilde{G}} \frac{\partial\boldsymbol{\tau}}{\partial\psi}+ \frac{1}{2G}\frac{D\boldsymbol{\tau}}{Dt} + \frac{\boldsymbol{\tau}}{2\eta} = \dot{\boldsymbol{\varepsilon}}\]
where the wide tile denotes the effective damping coefficients and $\psi$ is the pseudo-time step. These are defined as in Räss et al. (2022):
\[\widetilde{\rho} = Re\frac{\eta}{\widetilde{V}L}, \qquad \widetilde{G} = \frac{\widetilde{\rho} \widetilde{V}^2}{r+2}, \qquad \widetilde{K} = r \widetilde{G}\]
and
\[\widetilde{V} = \sqrt{ \frac{\widetilde{K} +2\widetilde{G}}{\widetilde{\rho}}}, \qquad r = \frac{\widetilde{K}}{\widetilde{G}}, \qquad Re = \frac{\widetilde{\rho}\widetilde{V}L}{\eta}\]
where the P-wave $\widetilde{V}=V_p$ is the characteristic velocity scale for Stokes, and $Re$ is the Reynolds number.
Physical parameters
Symbol | Parameter |
---|---|
$T$ | Temperature |
$q$ | Flux |
$\boldsymbol{\tau}$ | Deviatoric stress |
$\dot{\boldsymbol{\varepsilon}}$ | Deviatoric strain rate |
$\boldsymbol{u}$ | Velocity |
$\boldsymbol{f}$ | External forces |
$P$ | Pressure |
$\eta$ | Viscosity |
$\rho$ | Density |
$\beta$ | Compressibility |
$G$ | Shear modulus |
$\alpha$ | Thermal expansivity |
$C_p$ | Heat capacity |
$\kappa$ | Heat conductivity |
Pseudo-transient parameters
Symbol | Parameter |
---|---|
$\psi$ | Pseudo time step |
$\widetilde{K}$ | Pseudo bulk modulus |
$\widetilde{G}$ | Pseudo shear modulus |
$\widetilde{V}$ | Characteristic velocity scale |
$\widetilde{\rho}$ | Pseudo density |
$\widetilde{\theta}$ | Relaxation time |
$Re$ | Reynolds number |