Skip to content

Spatial discretization of the governing equations

We discretize both the Stokes and heat diffusion equations using a Finite Differences approach on a staggered grid (ref Taras book here).

Heat diffusion

Stokes equations

where dotted lines represent the velocity ghost nodes.

Time and pseudo-time discretization of the APT equations

We discretize both the Stokes and heat diffusion equations using a Finite Differences approach on a staggered grid (ref Taras book here).

Heat diffusion

θ~qxn+1qxnΔψ+qxn+1=κTn+TnΔxθ~qyn+1qynΔψ+qyn+1=κTn+TnΔxρ~Tn+1+TnΔψ+ρCpTn+1+TtΔt=(qxx+qyy)

Upon convergence we recover

Tt+Δt=Tn+1qxt+Δt=qxn+1qyt+Δt=qyn+1

Stokes equations

Conservation of momentum

ρ~uxn+1uxnΔψ+τpn+1pnΔx=0ρ~uyn+1uynΔψ+τpn+1pnΔy=ρgy

Conservation of mass

1K~pn+1pnΔψ+(uxn+1uxnΔx+uyn+1uynΔy)=1Δt(β(pt+Δtpt)+α(Tt+ΔtTt))

Constitutive equation

12G~τn+1τnΔψ+12Gτn+1τtΔt+τn+12η=ε˙